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摘要

ᒿ๱ΓαޑቚуǴࠤѱύًޑ፶ΨᒿϐቚуǴ຾Զ೷ԋҬ೯Ꮮ༞ᆶޜ਻

ԡࢉǶӢԜǴඵችࠠၮᒡس಍ (intelligent transportation systems, ITS) ೏ගр

಍سڋҬ೯ဦᇞ௓ࣁύϐ΋ځᚒǴୢޑ๓Ҭ೯Ꮮ༞ׯٰ (traffic signal control

systems)Ǵ೸ၸፓ᏾Ҭ೯ဦᇞٰၲׯډ๓Ҭ೯Ꮮ༞Ƕ౜ϞޑҬ೯ဦᇞ௓سڋ಍Ь

要ਥᏵၸѐޑᐕўًࢬໆၗ਑ٰፓ᏾ӚঁਔޑࢤҬ೯ဦᇞǴՠԜБݤϝคݤ୏

ᄊЪԾ፾ᔈӦਥᏵًࢬໆٰ຾Չဦᇞޑፓ᏾Ƕ

ॺගрΑ΋ঁ᏾ӝीᆉൂϡᆶჴᡏൂϡךΑૈ୏ᄊЪԾ፾ᔈӦፓ᏾ဦᇞǴࣁ

಍سڋȨᆛӹჴᡏҬ೯௓ࣁ಍ᆀسޑ (Cyber-Physical Traffic Control Systems)Ǵ

ᙁᆀ (CPTCS)ȩаڗளջਔޑၰၡၗ਑٠ᓬϯဦᇞǶԜѦǴךॺΨଞჹ CPTCS

ගрΑ΋ঁӜࣁȨԾ፾ᔈဦᇞᓬϯ (Adaptive Timing Optimization)Ǵᙁᆀ

(ATO)ȩޑБݤǴ྽ύх Ȩ֖୷ܭ୷Ӣᄽᆉݤϐဦᇞᓬϯ (GA-based signal timing

optimization)ȩᆶȨԾ፾ᔈᓬϯፓ᏾ (adaptive adjustment of optimization)ȩٿ

ঁ೽ϩǶ୷ܭ୷Ӣᄽᆉݤϐဦᇞᓬϯаջਔޑၰၡၗ਑ჹဦᇞ຾ՉᓬϯǴԶԾ

፾ᔈᓬϯፓ᏾ࢂ߾ӧ CPTCS Ԗज़ޑीᆉਏૈΠ೸ၸፓ᏾ᓬϯޑሚॶᆶᓎ౗ٰ

ቚуीᆉޑਏ౗Ƕ

ӧᓬϯਏ݀ޑჴᡍ่݀ᡉҢрӧ΋Ϻޑ௃ݩΠǴATO Кଆۓڰፓ᏾ޑБݤ

ӧѳ֡΢ૈ෧Ͽ 34% ᖻֽ౛ፕϐဦᇞᓬϯ࣬КǴૈ෧Ͽܭ፶ǴЪᆶ୷ًࡑ฻ޑ

ஒ߈΋७ޑ฻ًࡑ፶Ƕӧᓬϯԛኧޑჴᡍ่݀ᡉҢрӧ΋Ϻޑ௃ݩΠǴ٬ҔԾ

፾ᔈᓬϯፓ᏾К҂٬Ҕӧѳ֡΢ૈ෧Ͽ 21% ᓬϯޑЯ࣬ӕ߈ډᓬϯԛኧ٠ၲޑ

ਏ݀Ƕ
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Abstract

With the increase in population, the number of vehicles on the road has increased

rapidly, which causes traffic congestion and air pollution. To solve this issue,

intelligent transportation systems (ITS) were proposed.

One kind of ITS is traffic signal control systems which adjust signal timing

configurations at intersections then the problem of traffic congestion is alleviated .

Existing traffic signal control systems adjust signal timing configurations according

to historical traffic volumes. However, such an approach is still unable to react

dynamically and adaptively to real-time traffic volume.

In order to alleviate traffic congestion dynamically and adaptively, we propose

a Cyber-Physical Traffic Control Systems (CPTCS) that integrates the computa-

tional elements and physical entities to obtain real-time traffic data and optimize

signal timing configurations. Further, we also propose an Adaptive Timing Opti-

mization (ATO) for CPTCS including GA-based signal timing optimization and

adaptive adjustment of optimization. The GA-based signal timing optimization

tries to optimize signal timing configurations according to the real-time traffic

data. To increase scalability of CPTCS, adaptive adjustment of optimization is

proposed, which includes adjusting optimization threshold and optimization fre-

quency.



Experiments conducted on optimization show that compared with the fixed

timing method, ATO reduces number of waiting vehicles by 34% and incurs re-

duction in number of waiting vehicles almost double compared with the game

theory-based method. Experiments conducted on optimization times show that

compared with signal timing optimization only, signal timing optimization with

adaptive adjustment of optimization can reduce the optimization times by 21%

for a full day traffic.

Keywords: Traffic Congestion, Intelligent Transportation Systems, Cyber-

Physical Systems, Signal Timing Optimization, Genetic Algorithm, Adaptive Op-

timization,
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Chapter 1

Introduction

With the increase in population, the number of vehicles on the road has in-

creased rapidly, which cause traffic congestion in urban areas, especially during

the peak hours. This situation leads to drivers wasting a lot of time during travel,

while causing air pollution. As a result, traffic congestion is a critical issues in

urban traffic.

To solve this issue, existing traffic control systems adjust signal timing config-

urations according to the different hours of a day. However, such an approach is

still unable to react dynamically and adaptively to the traffic volume because the

configurations are determined by historical traffic volume rather than real-time.

In order to obtain the real-time traffic information of urban areas, a traffic

control system must be integrated with vehicle detectors. Such a system when

equipped with capability to react dynamically and adaptively to the traffic volume

is called a Cyber-Physical Traffic Control Systems(CPTCS).

In this Thesis, we want to alleviate traffic congestion, so we proposed an Adap-
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tive Timing Optimization (ATO) for CPTCS, including GA-based signal timing

optimization and adaptive adjustment of optimization. In ATO, it considers the

traffic volume and queue length of roads to calculate the most appropriate signal

timing for intersection to alleviate traffic congestion. Furthermore, due to the

limited computing power of CPTCS, ATO also adjusts the optimization threshold

and optimization frequency to increase computation efficiency.

1.1 Background

1.1.1 Traffic Signal Timing Optimization

In order to make the signal timing more appropriate to intersection, the traffic

signal timing optimization was proposed. The traffic signal timing optimization is

to adjust the length of green time of each road according to the traffic information

such as traffic volume, queue length, waiting time of vehicles and so on.

Traffic signal timing optimization has demonstrated it effective for in reduc-

ing traffic congestion [3] and a large number of traffic signal timing optimization

methods have been proposed to address the traffic signal timing issue, including

fuzzy-logic [1], neural networks [4], particle swarm optimization [5][6], Petri-nets

[7], game theory [8], and genetic algorithm [9][10].

1.1.2 Cyber-Physical System

Cyber-Physical Systems (CPS) integrate computing, networking, data storage,

and physical entities (e.g. sensors, device controller, etc.) for monitor or control

2



the physical entities [11][12].

The difference between and traditional embedded system is the emphasis in

CPS on the interaction between systems, instead of standalone. Nowadays, CPS

has played an important role in smart-grid [13], medical devices [14], Intelligent

Transportation Systems (ITS) [15] and so on.

1.2 Motivation

Figure 1.1: Traffic congestion status before optimization

In this section, we present an example to show our goal. We simulate an urban

city with high traffic volume and optimize the traffic with CPTCS.

The degree of congestion as shown in Table 1.1, is estimated by the Intersection

Average Waiting Rate (IAWR) which will be explained in chapter 3. According
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Figure 1.2: Traffic congestion status after optimization

to the IAWR, we mark the roads with colors to represent the congestion degree

clearer, that is IAWR under 50 with white, between 50 and 70 with gray and above

70 with black.

Figure 1.1 shows the IAWR of each intersection, where all intersections are

heavily congested. This situation implies that current signal timing configurations

cannot reduce the traffic volumes at the congested intersections. To mitigate traf-

fic congestion, the signal timing configurations should be adjusted via optimization

that is, IAWR must be decreased. Figure 1.2 shows the changed traffic congestion

degree after optimization. Thus, heavily congested intersections are now less con-

gested. The average IAWR of all intersections is now reduced from 67.77 to 42.91

(by 36.34%).
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Table 1.1: Optimization result of example
Intersection Unoptimized IAWR Optimized IAWR Reduce (%)

1 68.39 46.65 31.78
2 71.62 50.53 29.45
3 60.60 50.03 17.45
4 68.55 39.66 42.15
5 69.51 33.53 51.76
6 67.96 37.07 45.45

Average 67.77 42.91 36.34

Table 1.2: Optimization times of example
No adjustment Adaptive adjustment of optimization

Time
Average IAWR Times Average IAWR Times

Peak hours (morning) 37.63 34.4 37.57 17.1
Off-peak hours 33.24 21.9 33.32 24.4

All day 34.44 75.3 34.59 59.9

In order to react to the traffic congestion rapidly and prevent the unnecessary

optimization and over-optimization, ATO adjusts the optimization threshold and

optimization frequency according to traffic conditions. Table 1.2 gives the number

of times optimization was performed for all day. For all day, the resulting IAWR

values in the “No adjustment” case and in the “Adaptive adjustment of optimiza-

tion” case are approximately the same; however, in the latter case the numbers of

optimization times are much smaller. The average number of optimization times

is reduced from 75.3 (no adjustment) to 59.9 (with adaptive adjustment), that is,

the reduction is by 21%. This means the adaptive adjustment of optimization can

reduce the optimization times and maintain almost the same optimization result.

In other words, the computation efficiency is increased by adaptive adjustment of

5



optimization.

1.3 Thesis Organization

The rest of this Thesis is organized as follows. Chapter 2 introduces related

work on traffic signal timing and the optimization algorithm. Chapter 3 illustrates

the proposed system architecture, how it works, and the definitions used in the

system. Chapter 4 explains the optimization algorithm in our system. Chapter 5

presents the simulations and analyzes the results. Chapter 6 gives the conclusion

of the Thesis.

6



Chapter 2

Related Work

In this chapter, we introduce the issue in traffic signal timing and research

previous approaches. Further, we organize the approaches to find out the crucial

traffic informations that used in previous works and the result as Table 2.3.

2.1 Traffic Signal Control

Traffic signal control (TSC) is important and effective to urban city traffic and

solving traffic congestion. Thus, there are several methods have been proposed for

the TSC optimization. TSC can be classified to three stages [3]:

1. Pre-timed control [16][17] : Using the predetermined signal timing for cor-

responding time or traffic flow.

2. Traffic-responsive control [18] : Depending on the real-time traffic data which

from sensors to adjust signal timing.

3. Intelligent control : By implementing the computational intelligence like

7



neural networks, fuzzy system, genetic algorithm, etc. on TSC to found the

optimal or suboptimal signal timing.

Because the uncertainty and complexity of traffic, we focus on the intelligent

control approaches and use it to solving signal timing.

2.2 Single Approach on Signal Control

Lertworawanich Ponlathep proposed a Adaptive Signal Control Algorithm for

isolated intersections [19]. They use the shockwave theory-based method to con-

struct the time-space diagrams from occupancy information that obtained from

detectors. After constructing the time-space diagrams of all phase, the delay per

cycle can be evaluated then optimizes the splits of each phase by increase or de-

crease green time to reduce total delay. Due to the increase or decrease of green

time, the cycle length of the intersection is adjusted too.

Khanjary et al. proposed a game model that based on Cournotȷs oligopoly game

to optimize single intersection [8]. In this model, each direction of intersection are

regarded as a player and the queue length as the payoff. All players is compete

for the shared time to increase their green light time. If the green time of the

player is long enough, the payoff will achieve the highest when it equal to zero

that means no vehicles in the queue. Therefore, the queue model was proposed and

it determine the queue length by arrival rates α, departure rates β, current queue

q, and green time t of the phase that can be expressed as qi + αT − ti(α+ β). By

draw the diagram of the equation which shown in Figure 2.1, the Nash equilibrium

8
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Figure 2.1: Nash equilibrium of two phase

could be figured out and then to decide the green time for next green phase.

Tung et al. proposed a traffic signal timing adjustment strategy based on ge-

netic algorithm [9]. The strategy is based on the cellular automata model and it

uses the informations like starting and destination points of all vehicles to optimize

the signal to minimize travel time. In the genetic algorithm (GA) of the strategy,

the chromosome is defined as the traffic information of whole intersections which

includes the vertical green time, horizontal green time, current signal state, and

remain time. The fitness value of the chromosome is defined as the average traffic

time, thus the lower average traffic time will be higher fitness value. After ge-

netic algorithm processing, the chromosome with the lowest average traffic time

would be obtained that is the new signal timing of whole intersections. However,

retrieving the informations of all vehicles is difficult in practice, the authors also

proposed a improved expectation maximization (EM) method. By tuning the EM

9



solution which based on GA solution with linear learning model, the significant

features are observed that is vertical green time and horizontal green time of self

and adjacent intersection.

2.3 Hybrid Approach on Signal Control

Yi et al. proposed a fuzzy logic controller with adaptive dynamic programming

for isolated intersection signal optimization [1]. The strategy of this controller is

to add extended green time to current phase depending on the information from

vehicle detectors. The fuzzy logic controller has two input and one output, the

inputs are number of vehicles in green phase (Q_Green) and other red phases

(Q_Red), output is the action of the controller that extending or terminating the

green phase. The membership functions is shown in Figure 2.2 and rule shown in

Table 2.1. By optimizing the membership functions of the fuzzy logic controller

with adaptive dynamic programming, the average delay time can be reduced es-

pecially in heavy traffic volume and traffic sudden changing.

Table 2.1: Fuzzy rule of [1]

Outpur
Q_Red
Zero Small Medium Big

Q_Green

Zero T T T T
Small E E T T
Medium E E E T
Big E E E E

Bi et al. proposed a Type-2 fuzzy logic controller (T2FLC) for single intersec-

tion [2] that combining fuzzy logic and genetic algorithm. The method considers

10
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Figure 2.2: Membership functions of [1]

the queue length of the roads and divided them into three fuzzy language partitions

”short”, ”medium, ”long”. Then use queue length of next green phase (QG) and

queue length of red phase (QR) as the two inputs of T2FLC to obtain the green

time (T) of next phase. The membership functions is shown in Figure 2.3 and

rule shown in Table 2.2. In order to validity of the T2FLC, the authors select the

queue length and average delay as criterion and propose queue length model and

delay model. Finally, the authors use genetic algorithm to minimize the average

delay that based on those models and obtain suitable green time.

Table 2.2: Fuzzy rule of [2]

Output (T)
QG

Short Medium Long

QR
Short S M L

Medium S M L
Long S S M

11
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Figure 2.3: Type-2 Gaussian membership functions of [2]

Table 2.3: Traffic signal timing approaches
Year Literature Scheme Used Parameters Objectives

2010 [19] Time-space diagrams
Queue length
Vehicle speed

Minimize queue length
Minimize delay time

2013 [8] Game theory
Queue length
Arrival rates

Departure rates

Minimize queue length

2014 [9] Genetic algorithm
Starting and destination

points of vehicle
Average signal timing

Minimize travel time

2008 [1]
Fuzzy logic

Adaptive Dynamic Programming
Queue length

Arrival vehicles
Minimize delay time

2013 [2]
Fuzzy logic

Genetic algorithm

Queue length
Arrival vehicles
Departure rates

Minimize delay time
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Chapter 3

Proposed System Architecture

In this chapter, we introduce the traffic definitions and explain the proposed

Cyber-Physical Traffic Control Systems (CPTCS) architecture as shown in Fig-

ure 3.1.

Computational Elements

Physical Entities

Traffic Signal ControllersVehicle Detector Camera

Traffic Data 

Processing

Signal Configuration 

Manager

Traffic Signal Control System Traffic Signal Optimization System

Optimization Trigger
Signal Timing 

Optimization

Adaptive Adjustment of 

Optimization

Monitors Controllers

Traffic Condition 

Request

New Signal Timing Configuration

New Optimization Threshold and Frequency

Signal Timing Configuration

Traffic Data

Figure 3.1: Architecture of Cyber-physical Traffic Control Systems
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3.1 Definitions

In this section, we give the definitions for road, intersection, and signal in our

system.

3.1.1 Traffic Configuration

Road

Road 1

DetectorDetector

Road 2

Figure 3.2: Straight road with two directions

The common road is shown in Figure 3.2 which has two opposite directions.

In our system, for simplicity only one-way road are considered. Thus a two-way

road can be considered as two roads, such as road 1 is east to west and road 2

is west to east. For each monitored road, we assume they have detectors in both

the upstream and the downstream to detect the vehicles entering and leaving the

road.
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Figure 3.3: Four-way intersection (crossroads)

Table 3.1: Intersection parameters
Parameter Description

Minimum Green Time (GTm) Minimum green time allowed to set.
Maximum Green Time (GTM) Maximum green time allowed to set.

Basic Optimization Interval (OIB) Basic optimization interval of the intersection
Maximum Optimization Interval (OIM) Maximum optimization interval allowed to set

Optimization Threshold (OT )
The value against which the current IAWR
is checked

Optimization Interval (OI)
The number of cycles between two successive
optimization check

Stability (Sself )
The value to represent the stability of the
intersection, the range of stability is from 0 to 10

Intersection

The common four-way intersection is shown in Figure 3.3, which is composed

by four roads with vehicles entering the intersection. For each intersection, it has

own intersection parameters that shown in Table 3.1.
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Figure 3.4: Phase 1 of four-way intersection

Figure 3.5: Phase 2 of four-way intersection

Signal Timing Configuration

A signal timing configuration includes the signal timing of every phases and

each phase has its own time of green light, yellow light, and red light that we

called green time, yellow time, and red time respectively. For the intersection

shown in Figure 3.3, signal timing configuration can be divided into two phases

as shown in Figure 3.4 and Figure 3.5. In the intersection, each road belongs to

a phase and each phase has its own green time and yellow time to allow vehicle

passing, as shown in Figure 3.6. The intersection signals continuously countdown

so that during green light the vehicles of each phase can take turns to pass the

intersection. A cycle is defined as the time period from the start time to the end

16



Phase 1

Phase 2

Green time
Yellow time

Red time

Cycle

Cycle i Cycle i+1

Time

Cycle time

Cycle i+2 Cycle i+3

Phase 1

Phase 2

Cycle time Cycle time

Cycle i Cycle i+1 Cycle i+2

Intersection
Cycle i-1 Cycle i Cycle i +1 Cycle i+2

Figure 3.6: Signal timing configuration of an intersection

time of a phase, all phases in an intersection have same cycle time. In order to

recognize the cycle of intersection, the cycle number of intersection is same to the

cycle number of last phase.
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3.2 Physical Entities

In this section, we explain the following of each physical entity.

3.2.1 Monitors

Monitors are used to detect and record information on the number of vehicles

entering and leaving a road. Detection is performed using vehicle detector or a

camera with image processing.

At the end of a cycle, the recorded traffic data as shown in Table 3.2 will be

sent to the traffic signal control system and stored.

Table 3.2: Data of single cycle

Name Description

Cycle Time (CT ) Cycle time of this cycle

Arrived vehicles (V ) Number of arrived vehicles in the cycle.

Arrived Rate (V R) V
CT × 60

Passed vehicles (PV ) Number of passed vehicles during green light and yellow light.

Waiting Vehicles (WV ) Number of vehicles waiting at a red light.

Waiting Time (WT ) Total time of all vehicles spent to wait.

Waiting Rate (WR) WV
V

3.2.2 Controllers

Controllers are responsible for controlling the traffic signal at an intersection.

The traffic signal configuration manager issue commands as shown in Table 3.3
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Signal State
Configuration

G : 9 

Y : 1 R : 10 

After 9 seconds

G : 9 

Y : 1 
Get current configuration and change state

R : 10 

After 1 second
Get current configuration and change state

Y : 1 R : 8 G : 11 New configuration

G : 11 

After 10 seconds

Get current configuration and change state

Get current configuration and change state

Time

Figure 3.7: Mechanism of controller in signal display

to control the signal controller. After the signal timing configuration of the con-

trollers are initialized, the signal controller will continuously countdown to display

the signals of every road. When the controller receives the set signal configuration

command and the new signal timing configuration, the current configuration is

replaced by the new one, without affecting the current signal display. For safety,

the current signal countdown will continue until the end of current light. Thus

Table 3.3: Commands of signal configuration manager sent to signal controller
Command Description

Initialize
Signal configurations manager sends the intersection
signal timing configuration to the controller.

Set Signal Configuration
Controller applies the new signal timing configuration of the
intersection.

Synchronize
Controller directly replaces the current signal state of each
phase with the specified signal state, the signal will display
the new state immediately.
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means new signal timing configuration are only applied staring from the next dis-

played light. The mechanism of controller in signal display is shown in Figure 3.7.

In addition, regularly synchronization is performed so as to prevent the deviation

of signal state between controller and system.
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3.3 Computational Elements

In this section, we explain the function of all computational elements. The

flow chart of the system operation process is as shown in Figure 3.8.

Reach 

Optimization 

Interval ?

IAWR > 

Optimization 

Threshold

Intersection Data
New Signal Timing 

Configuration

Send New Signal Timing 

Configuration

to Controller 

Signal Configurations 

Management

Signal Timing 

Optimization

Adaptive Adjustment of 

Optimization

Waiting for Next Cycle Traffic Data Processing

Yes

Yes, ��௘�௙ = Ͳ

No

No, ��௘�௙ + ͳ

Figure 3.8: Flow chart of the system operation process

3.3.1 Traffic Data Processing

Traffic data processing is performed for multiple cycles. The average traffic

data of roads and intersection data are calculated for C cycles. For intersection

data calculation, we use a weighted average because roads with higher volumes

are more important than the others. Definitions for average traffic data and in-

tersection data are give in Table 3.4.

Note that we choose the intersection average waiting rate (IAWR) as the basic

optimization criterion in our proposed traffic control system.
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Table 3.4: Data of multiple cycles

Name Description

Calculated Cycles (C)

The number of calculated cycles

for estimating the traffic condition

during these cycles.

Road Average Data

Average Arrived Vehicles (Vavg)
∑C

i=1 V
i

C

Average Arrived Rate (Vmin)
∑C

i=1 V Ri

C

Average Waiting Vehicles (WVavg)
∑C

i=1WV i

C

Average Waiting Time (WTavg)
∑C

i=0
WT i

V i /C

Average Waiting Rate (WRavg)
∑C

i=1WRi

C

Intersection Data

Composed Roads (R) The number of composed roads

Intersection Arrived Vehicles (Vinte)
∑R

j=1 V
j
avg

Intersection Average Waiting Time (IAWT )
∑R

j=1

V j
avg ×WT j

avg

Vinte

Intersection Average Waiting Rate (IAWR)
∑R

j=1

V j
avg ×WRj

avg

Vinte

3.3.2 Optimization Trigger

The optimization trigger is responsible for determining whether the intersection

should be optimized or not. If the current IAWR is greater than the optimiza-

tion threshold than optimization performed and set the Sself to 0, otherwise the

stability counter increment by 1. Adaptively changing optimization threshold and

optimization interval is very important for big data analysis in smart cities. This
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work proposes a method for adaptive adjustment of optimization.

3.3.3 Signal Timing Optimization

Signal timing optimization calculates a new signal timing configuration accord-

ing to the average traffic data of the composed roads. The detail calculation will

described in the following Chapter 4. After completing the calculation, the new

signal timing configuration will be sent to the signal configurations manager.

3.3.4 Adaptive Adjustment of Optimization

Based on the collected and calculated data of the target intersection and they

of adjacent intersections, an appropriate optimization threshold and an optimiza-

tion interval are dynamically determined, which we call adaptive adjustment of

optimization. Detailed calculations are given in the following Chapter 4.

3.3.5 Signal Configurations Manager

Signal configuration manager is responsible for storing signal timing configu-

rations of all intersections and interaction with the traffic signal controllers. If a

new signal timing configuration is received from the signal timing optimization, it

will be stored and sent to corresponding traffic signal controller.
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Chapter 4

Optimization Methods

In this chapter, we introduce the two parts of our proposed adaptive timing

optimization, namely the signal timing optimization and the adaptive adjustment

of optimization.

4.1 Signal Timing Optimization

In the section, we explain our proposed genetic algorithm-based signal tim-

ing optimization, including chromosome design, fitness function, and optimization

steps.

4.1.1 Chromosome Design

In our optimization method, the chromosome represents an intersection signal

timing configuration which consists only of green time of each phase. Since the

yellow time is very short compared to a full cycle time of intersection we can ignore
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14 16 18Chromosome

Green time of phase 1 Green time of phase 2 Green time of phase 3

Phase 1 14 16 18

Green time Red time

Phase 2 16 14 18

Red timeGreen time

Phase 3 18

Green time

14 16

Red time

Signal Timing Configuration

Transform

Figure 4.1: Chromosome of three phases intersection

it. The red time of each phase is the sum of the green times of other phases thus

there is no need to explicitly record it.

The chromosome length is the number of green times, if the chromosome has

three green times that the chromosome length is three. The maximum and mini-

mum of the green time are determined by the intersection parameters. For exam-

ple, if the intersection has three phases and the maximum and minimum of green

times are 30 and 10, the chromosome will have three values that represent the

green time of the three phases and each value would be between the maximum

and minimum values as shown in Figure 4.1 shows.

4.1.2 Fitness function

Our goal is to reduce the IAWR of an intersection, thus we directly use IAWR

as the fitness value and select the chromosome with the lowest fitness value. As
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equation 4.1, the fitness function use the estimated IAWR IAWRe means the

IAWR that if we apply the new signal timing configuration which transform by

the estimated chromosome to the current traffic volumes of the intersection.

Fitness = IAWRe (4.1)

To calculate the IAWRe, we using the new signal timing configuration and

road average data obtained from traffic data processing which shown as Table 3.4.

The IAWRe can be expressed by Equation 4.2 that is similar to the depiction of

IAWR except WRavg is replaced by WRe, which is the estimated waiting rate of

a road and it can be expressed as Equation 4.3, where Vmin is the average arrived

rate of road average data , TG and TR are the green time and red time which will

be applied to the road, and RT is the reservation time. The reservation time of a

road is defined as the total tome required for all waiting vehicles in the previous

cycle to leave the road.

IAWRe =
R∑

j=1

V j
avg ×WRj

e

Vinte

(4.2)

In the WRe calculation, we assume the vehicle arrivals are uniform distribution,

so the total number of vehicles arrived in a cycle can be estimated as Vmin× (TG+

TR) The number of waiting vehicles in a cycle can be estimated as Vmin × TR.

However, at the start of the current cycle, the waiting vehicles from the previous

cycle will need the RT to leave from the road. During this time RT leaving the

previous waiting vehicles, some of the newly arrived vehicles in the current cycle
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need to wait during the green time of the current cycle. For this reason, the

number of waiting vehicles add includes the vehicles during RT Vmin ×RT .

WRe =
WaitingV ehicle

TotalV ehicle
=

Vmin ×RT + Vmin × TR

Vmin × (TG + TR)
(4.3)

The design of the fitness function given in Equation 4.1 allows large deviations

in the green time although the difference between traffic volumes is extremely

small. Accordingly, we add the signal deviation factor (SDF ) to prevent the

situation as shown in Equation 4.4, where α and β are weight for IAWRe and

SDF respectively. When the difference between traffic volumes is extremely small,

the difference of IAWRe between the chromosome with large deviations and the

chromosome with small deviations are extremely small that almost between 0.01

to 0.02. In this situation, the SDF has highly influential in determining the

chromosome.

Fitness = IAWRe × α + SDF × β (4.4)

SDF can be expressed as in Equation 4.5, where σ is the standard deviation of

the green time and MD is the difference between the maximum and the minimum

green time of the intersection parameters.

SDF =
σ

MD
(4.5)

After tuning, we set the weights α to 1 and β to 0.1.
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Reservation Time Calculation

For the reservation time calculation, we use the Intelligent Driver Model (IDM)

which is a car-following model [20] to simulate vehicles behavior on the road. The

IDM function can be expressed as Equation 4.6 and the parameters of IDM are as

given in Table 4.1. Using IDM, we can get the next acceleration or deceleration

value of a vehicle.

IDM(α, α− 1) = a

(
1−

(
vα
v0

)δ

−
(
s0 + vαT

sα
+

vα∆vα

2
√
absα

)2
)

(4.6)

Table 4.1: Parameters of IDM
Parameter Description

vα The velocity of vehicle
xα The position of vehicle
lα The length of vehicle

∆vα
The velocity difference between vehicle α and α− 1

∆vα = vα − vα−1

sα
The net distance between vehicle α and α− 1

Sα = xα−1 − xα − lα−1

v0 The desired velocity, we set it to the speed limit of located road
s0 The minimum desired net distance between two vehicles
T The desired time headway
a The acceleration
b The braking deceleration
δ The exponent that is usually set to 4

The reservation time calculation is as shown in Algorithm 1. Since the reserva-

tion time calculation is to calculate the total time required for all waiting vehicles

to leave the road, we can assume the velocity of each waiting vehicle is 0 and the
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net distance between each vehicle is minimum. Further, we iteratively calculate

the velocity of each vehicle and according to the velocity, each vehicle is moved

until the last vehicle leaves the road. The total time required for this process is

called the reservation time.

Algorithm 1: Reservation Time Calculation
Input:
WV : Number of waiting vehicles;
lv : Length of vehicle;
s0 : Minimum desired net distance;
v0 : Desired velocity;
Output:
RT : Reservation time;
Variable:
G : Position of goal;
Q : Queue of waiting vehicles;
Vi : i-th waiting vehicles;
vc : Current velocity;
vn : Velocity of next second;

1 Q = ∅;
2 RT = 0;
3 G = WV × (lv + s0)− lv;
4 for i = 1 to WV do
5 Create a new vehicle Vi and set its position at G− (i× (lv + s0)− lv);
6 Add Vi to Q;
7 while VWV .position < G do
8 for i← 1 to WV do
9 vc = Vi.velocity;

10 if i == 1 then
11 vn = vc + accelerationofVi;
12 if vn > v0 then
13 vn = v0;

14 else
15 vn = vc + IDM(Vi, Vi−1); //Equation 4.6
16 Vi.position + = (vc + vn)/2;
17 RT+ = 1;
18 return RT ;
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Solution

Mutation

Termination

Yes

No

Figure 4.2: Flow chart of the genetic algorithm-based signal timing optimization

4.1.3 Optimization Steps

The flow chart of GA-based optimization steps is as shown in Figure 4.2. The

parameters of the genetic algorithm are as shown in Table 4.2. The steps from

selection to mutation are defined as a generation and are explained in the following.

Table 4.2: Parameters of genetic algorithm
Parameter Value
Population Size (PS) 50
Generation (G) 50
Selection Operator Tournament
Crossover Probability (Pcro) 0.7
Mutation Probability (Pmut) 0.05
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Initial Population

At first, we generate the chromosomes and put them into the genetic pool,

the number of generated chromosomes is equal to the population size. The initial

population step is as shown in Algorithm 2.

Algorithm 2: Initial Population
Input:
p : Number of phases;
GTM : Maximum of green time;
GTm : Minimum of green time;
PS : Population size;
Output:
GP : Genetic pool, a set of chromosomes

1 GP = ∅;
2 for i = 1 to PS do
3 Generate a chromosome c with p random values between GTm and GTM ;
4 Add c to GP ;
5 return GP ;

Selection

In the selection step, we use tournament selection to choose chromosomes with

better fitness from the genetic pool. For each tournament selection, we randomly

select 5 chromosomes from the genetic pool and copy the best fitness chromosome

into the new genetic pool. The selection is repeated until the population size of

new genetic pool a pre-defined limit. At the end of selection, we replace the genetic

pool with the new one to be used in the next step. The selection step is as shown

in Algorithm 3.
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Algorithm 3: Selection
Input:
GP : Genetic pool;
PS : Population size;
Output:
GP : Genetic pool, a set of chromosomes;
Variable:
GPn : New genetic pool;

1 GPn = ∅;
2 for i = 1 to PS do
3 Randomly select 5 chromosomes from GP and copy the best fitness one

into GPn;
4 Replace GP with GPn, GP = GPn;
5 return GP ;

Crossover

In the crossover step, we randomly select two chromosomes from the genetic

pool as parent chromosomes and according to the crossover probability to de-

termine whether to crossover or not. If crossover is performed, two child chro-

mosomes will be produced and put into the new genetic pool, while the parent

chromosomes are removed from the genetic pool. If no crossover to be performed,

the parent chromosomes are directly put into the new genetic pool. At the end of

the crossover, the genetic pool is replaced with the new one to be used in the next

step. The crossover step is as shown in Algorithm 4.

Mutation

At the last step, we determine if each chromosome in the genetic pool is to be

mutated or not according to the given mutation probability. If it is to be mutated,

all the green times in the chromosome will be randomly incremented by −5 to 5
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Algorithm 4: Crossover
Input:
GP : Genetic pool;
PS : Population size;
Pcro : Crossover probability;
CL : Chromosome length;
Output:
GP : Genetic pool;
Variable:
GPn : New genetic pool;
r : A float between 0 and 1;;
Cp1 : Parent chromosome 1;
Cp2 : Parent chromosome 2;
Cc1 : Child chromosome 1;
Cc2 : Child chromosome 2;
cp : Crossover point;

1 GPn = ∅;
2 for i = 1 to PS

2
do

3 Randomly select 2 chromosomes from GP as parent chromosomes Cp1

and Cp2;
4 r = random float between 0 and 1;
5 if r ≤ Pcro then
6 cp = random integer between 2 and CL;
7 for j = 1 to CL do
8 if j < cp then
9 Cc1.phase j = Cp1.phase j;

10 Cc2.phase j = Cp2.phase j;
11 else
12 Cc1.phase j = Cp2.phase j;
13 Cc2.phase j = Cp1.phase j;

14 Put the child chromosome Cc1 and Cc2 into GPn;
15 else
16 Put the parent chromosomes Cp1 and Cp2 into GPn;

17 Replace GP with GPn, GP = GPn;
18 return GP ;
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seconds. The mutation step is as shown in Algorithm 5.

Algorithm 5: Mutation
Input:
GP : Genetic pool;
PS : Population size;
Pmut : Mutation probability;
CL : Chromosome length;
GTM : Maximum of green time;
GTm : Minimum of green time;
Output:
GP : Genetic pool;
Variable:
r : A float between 0 and 1;;
t : A integer between −5 and 5;
GP i : The i-th chromosome in genetic pool;

1 for i = 1 to PS do
2 r = random value between 0 and 1;
3 if r ≤ Pmut then
4 for p = 1 to CL do
5 t = random integer between 5 and -5;
6 GP i.phase p = GP i.phase p+ t ;
7 if GP i.phase p > GTM then
8 GP i.phase p = GTM ;
9 if GP i.phase p < GTm then

10 GP i.phase p = GTm;

11 return GP ;

Termination

After completion of the above steps, the optimization method will check if

the termination condition is satisfied or not. Here, in this work, the number of

generations is used the termination condition. Therefore, the optimization will

stop when the number of generations has reached the upper bound; otherwise, the

next generation will be produced by repeating the above steps from selection to

mutation.
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Solution

Finally, we will obtain a best fitted chromosome as the solution which will be

sent to the signal configurations manager.
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4.2 Adaptive Adjustment of Optimization

In adaptive adjustment of optimization, we use the stability of the intersection

(Sself ) and the stability of adjacent intersections to calculate the threshold and

interval. Since an intersection usually has 3 or more adjacent intersections, the

average stability value is used to represent the stability of adjacent intersections.

The average stability of adjacent intersections (Sadj) can be expressed as Equa-

tion 4.7, where N is the number of adjacent intersections, V i
avg is the average

number of arrived vehicles which come from i-th adjacent intersection, Vinte is the

total number of arrived vehicles from adjacent intersections, and Si is the stability

of i-th adjacent intersection. Vavg and Vinte are obtained from the traffic data

processing. Figure 4.3 shows an example for the average stability of four adjacent

intersections.

Sadj =
N∑
i=1

V i
avg × Si

Vinte

(4.7)

4.2.1 Threshold Adjustment

For threshold adjustment, we want to make the optimization able to react

rapidly when the traffic volume is changed, and prevent unnecessary optimization

when the traffic volume is stable. For this reason, we set the threshold close to

IAWR but higher and gradually decreased when the traffic volume is stable.

If the optimization was just performed, the next optimization will only be

performed when the IAWR increased significantly to prevent unnecessary opti-
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Figure 4.3: Average stability of four adjacent intersections

mization. On the contrary, when the traffic volume is stable, a slight increment

of IAWR would trigger the optimization to prevent IAWR continually increasing.

The proposed threshold adjustment method is as shown in Algorithm 6. The

new threshold is calculated by weighted average calculation, so it will be between

the current threshold and IAWR. With an increase in stability (Sself), the new

threshold will be set gradually closer to the current IAWR until the new threshold

is the average of current threshold and IAWR.

4.2.2 Interval Adjustment

For interval adjustment, we want to reduce the frequency of optimization check-

ing because frequent checking will waste the computational power and decrease

computational efficiency especially when traffic volume is stable.

If the stability of the intersection is high, there will be no significant changes in
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Algorithm 6: Threshold Adjustment
Input:
IAWR : Current IAWR;
OTc : Current threshold, Tc ∈ [0,100] ;
Sself : Stability of the intersection, Sself ∈ [0,10] ;
RM : Maximum allowable increased rate of IAWR, RM ∈ [0,1] ;
Output:
OTn : New threshold;
Variable:
α : Weight value ;

1 if Sself == 0 then
2 OTn = Min (IAWR× (1 +RM) , 100);
3 else

4 α = Min

(
Sself

Max(Sself)
, 0.5

)
5 OTn = α× IAWR + (1− α)×OTc;
6 return OTn;

traffic volume and thus the frequency of optimization checking should be reduced.

In constant, if the stability of the intersection is low, the frequency of optimization

checking should be increased to ensure optimization is timely such that traffic

congestion can be alleviated. Besides, we also consider the stability of adjacent

intersections because the changes in traffic volumes of adjacent intersections will

affect the target intersection and cause the changes in traffic volume.

Therefore, we adjust the optimization interval according to the stability of the

target intersection (Sself) and the stability of adjacent intersections (Sadj). The

calculation of new optimization interval (OIn) is as shown in Algorithm 7.
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Algorithm 7: Interval Adjustment
Input:
Sself : Stability of the intersection, Sself ∈ [0,10] ;
Sadj : Average stability of adjacent intersections, Sadj ∈ [0,10] ;
OIB : Basic optimization interval ;
OIM : Maximum optimization interval ;
Output:
OIn : New optimization interval;
Variable:
C : Curve factor ;
RI : Rate of increment ;
RIM : Maximum rate of increment ;

1 Calculate the maximum rate of increment RIM ;
2 RIM = OIM

OIB
=

(Max(Sself)+1)×(Max(Sadj)+1)+C

(Max(Sself)+1)+C

3 Use the equation of RIM to find the curve factor C ;
4 C =

(Max(Sself)+1)×(Max(Sadj)+1)×IB−(Max(Sself)+1)×OIM

OIM−OIB

5 Calculate the rate of increment RI and new optimization interval ;
6 RI =

(Sself+1)×(Sadj+1)+C

(Sself+1)+C

7 OIn = ⌊OIB ×RI⌋ ;
8 return OIn;
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Chapter 5

Experiments

This chapter presents the experimental results of the proposed ATO. We intro-

duce the experiment environment, compared methods, and experimental results.

5.1 Experimental Environment

In this section, we describe the simulation tool and simulation cases that we

used for experiments.

5.1.1 Simulation Tool

In our experiments, we want to simulate the traffic of a part of the city, thus we

need a microscopic traffic simulator. A microscopic traffic simulator SUMO [21] is

used in many works [5][6][4]. In SUMO, it has car-following models, lane-change

models, etc. to make the simulation more realistic. However, it is very complicated

to implement our proposed CPTCS architecture in SUMO by modifying its source
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code.

Thus, we build a relatively simple traffic simulator which is written in C#

language and implement CPTCS architecture and IDM [20] car-following model

in the simulator. In the simulator, we can customize the road map and the traffic

volumes to create a desired traffic for a part of the city. The traffic volume value is

the average arrived vehicles per minute and according to this value, the simulator

can randomly generate vehicles based on the Poisson distribution.

The source code of the simulator is released on GitHub [22].

5.1.2 Simulation Case

The simulation map as shown in Figure 5.1. The left side of the map is urban

and right side of the map is outskirts, so most of the vehicles from the left side

move to the right side and vice versa.

Figure 5.1: Simulation map
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For this map, we create all day traffic volume simulation cases which start time

from the AM 5:00 to PM 9:00. In this case, the time from AM 6:00 to AM:10:00

are the morning peak hours and time from PM:5:00 to PM 9:00 are evening peak

hours, and the other time period are off-peak hours. The roads 0, 2, 4, 9, 21,

22 are roads with vehicles entering, so we set the traffic volumes of these roads.

The traffic volume values as shown in Table 5.1, where each traffic volume value

represents the arrived vehicles per minute.

Finally, the intersection parameters in this case as shown in Table 5.2.

5.2 Tuning for Adaptive Timing Optimization

In the threshold adjustment method, we must determine the maximum allow-

able increased rate of IAWR (RM) of the Algorithm 6, so we perform an experiment

to find a better value for RM . In this experiment, we set RM to 0.05, 0.1, and 0.15

and compare the optimization results.

5.2.1 Experimental Results

The IAWR of all day as shown in Figure 5.2, and the optimization results are

shown in Table 5.3. The optimization gives the best result when RM is set to 0.1,

so we use the value 0.1 for RM in our other experiments.
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Table 5.1: Traffic volume values in all day case
Traffic Volume

Time Road 0 Road 2 Road 4 Road 9 Road 21 Road 22
AM 05:00 ∼ AM 6:00 1 1 1 1 1 1
AM 06:00 ∼ AM 6:30 3 3 3 2 3 2
AM 06:30 ∼ AM 7:00 3 3 4 2 4 2
AM 07:00 ∼ AM 7:30 5 5 6 3 5 3
AM 07:30 ∼ AM 8:00 5 5 8 3 6 3
AM 08:00 ∼ AM 8:30 7 7 7 3 9 3
AM 08:30 ∼ AM 9:00 7 7 6 4 8 4
AM 09:00 ∼ AM 9:30 5 5 5 4 6 4
AM 09:30 ∼ AM 10:00 5 5 5 4 4 4
AM 10:00 ∼ PM 5:00 3 3 3 4 3 4
PM 5:00 ∼ PM 5:30 3 3 3 6 3 6
PM 5:30 ∼ PM 6:00 3 3 3 6 3 6
PM 6:00 ∼ PM 6:30 3 3 3 8 3 8
PM 6:30 ∼ PM 7:00 3 3 3 10 3 10
PM 7:00 ∼ PM 7:30 3 3 3 8 3 8
PM 7:30 ∼ PM 8:00 3 3 3 6 3 6
PM 8:00 ∼ PM 8:30 3 3 3 4 3 4
PM 8:30 ∼ PM 9:00 3 3 3 4 3 4

Table 5.2: Intersection parameters in all day case
Parameter Value

Minimum Green Time (GTm) 30
Maximum Green Time (GTM) 90

Basic Optimization Interval (IB) 5
Maximum Optimization Interval (IM) 40

5.3 Comparison of Optimization Results

In order to prove our proposed ATO method is effective in solving traffic con-

gestion, we perform an experiment to compare the proposed ATO method with two
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Figure 5.2: IAWR of all day with different RM values

Table 5.3: IAWR comparison of different RM values
Time RM Average IAWR

0.05 34.69
0.1 34.59

All day
(AM 5:00 ∼ PM 9:00)

0.15 35.34

other two methods. The first method for comparison is the fixed timing (FT) that

is no optimization. The second method for comparison is the game theory-based

signal timing optimization (GT) introduced in Chapter 2 [8].

In addition, we perform another experiment to find the optimization limit of

ATO.

5.3.1 Experimental Results

In this experiment, we discuss the experimental results of morning peak hours,

nigh peak hours, off-peak hours and all day separately.
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Figure 5.3: IAWR of morning peak hours
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Figure 5.4: IAWR of evening peak hours

The IAWR of the two peak hours are as shown in Figure 5.3 and Figure 5.4,

respectively. The IAWR comparison of the two peak hours is as shown in Table
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5.4. For the two peak hours, both GT and ATO incur reductions in IAWR com-

pared with FT. GT reduces the IAWR by 13% and 23% respectively in morning

peak hours and evening peak hours. ATO reduces the IAWR by 32% and 39%

respectively in morning peak hours and evening peak hours. As the results, we

can observe ATO incurs a reduction in IAWR almost double that by GT.

Table 5.4: IAWR comparison of peak hours
Time Method IAWR Reduce (%)

FT 55.4 0 0
GT 47.98 13

Morning peak Hours
(AM 6:00 ∼ AM 10:00)

ATO 37.57 32
FT 58.31 0
GT 44.71 23

Evening Peak Hours
(PM 5:00 ∼ PM 9:00)

ATO 35.32 39
GT 46.35 18

Average
ATO 36.44 36

Off-peak Hours

The IAWR of off-peak hours is as shown in Figure 5.5, and the IAWR com-

parison of off-peak hours is as shown in Table 5.5. For the off-peak hours, both

GT and ATO incur reductions in IAWR that compare with FT. GT reduces the

IAWR by 15% and ATO reduces the IAWR by 33%. Both reductions in IAWR

are a little less than that at peak hours, because the traffic volumes of off-peak

hours are small, so the benefit of optimization is less obvious.
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Figure 5.5: IAWR of off-peak hours

Table 5.5: IAWR comparison of off-peak hours
Time Method IAWR Reduce (%)

FT 49.75 0
GT 42.10 15

Off-peak Hours
(AM 10:00 ∼ PM 5:00)

ATO 33.53 33

All Day

The IAWR of off-peak hours are as shown in Figure 5.6, and the IAWR com-

parison of off-peak hours are as shown in Table 5.6. For the full day, both GT and

ATO always incur reductions in IAWR especially during peak hours. On average,

GT reduces the IAWR by 17% and ATO reduces the IAWR by 34%.

Further, ATO always incurs higher reductions in IAWR than GT. This means

our proposed method is more efficient in solving traffic congestion.
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Figure 5.6: IAWR of all day

Table 5.6: IAWR comparison of all day
Time Method IAWR Reduce (%)

FT 52.36 0
GT 43.44 17

All day
(AM 6:00 ∼ PM 9:00)

ATO 34.59 34

5.3.2 Optimization Limit

For the experiment on finding the optimization limit of ATO, we used 5 differ-

ent sets of traffic volume data. One set is the all day case shown in Table 5.1. The

other four sets of data were generated by incrementing the values of traffic volume

in Table 5.1 by 4, 8, 12, and 16, that is, the second set had all traffic volumes in

Table 5.1 increased by 4, the third set by 8, the fourth set by 12, and the fifth set

by 16, the most congested traffic pattern.

The IAWR of FT and ATO are as shown in Table 5.7. In cases 1 and 2,

ATO reduces the IAWR by about 34%, however, with the all traffic volume values
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increased, the reduction in IAWR is smaller. In cases 4 and 5, ATO only reduces

the IAWR by 11%, it means in extremely high traffic volume, the reduction in

IAWR will be slight.

Table 5.7: IAWR of different all day case
Case FT ATO Reduce (%)

1 - All day 52.36 34.59 34
2 - All day + 4 72.61 46.98 35
3 - All day + 8 85.61 68.89 20
4 - All day + 12 89.84 79.54 11
5 - All day + 16 91.60 81.74 11

5.4 Comparison of Optimization Times

In this experiment, we compare the optimization times with different configu-

rations of our proposed adaptive adjustment of optimization to show the improve

in computational efficiency and discuss the reduction of optimization time in real-

world situations. The methods for comparison as shown in Table 5.8, the four

methods are described below. GA method is only optimization without threshold

adjustment and interval adjustment that is like traditional GA [9][10]. GA DTFI

method is optimization with only threshold adjustment and fixed optimization in-

terval. GA FTDI method is optimization with only interval adjustment and fixed

optimization threshold. ATO method is optimization with both threshold adjust-

ment and interval adjustment. The four methods are use same GA-based signal

timing optimization which our proposed, only different in threshold adjustment

method and interval adjustment.
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Table 5.8: Methods for comparison of optimization times
Threshold

Method
Fixed Dynamic

Fixed GA GA DTFI
Interval

Dynamic GA FTDI ATO

Before this experiment, we must determine the value of fixed threshold and

the value of fixed interval. The value of fixed interval we can directly use the basic

optimization interval of intersection parameters, so we just need to determine the

value of fixed threshold. Thus, we perform another experiment to find the value

of fixed threshold which with better result. Since the average IAWR of all day is

52.36, we select three values 45,50, and 55 of fixed threshold for the experiment

of fixed threshold.

The experimental result of different fixed threshold is as shown in Table 5.9.

As the result, we select 45 as the value of fixed threshold in following experiment.

Table 5.9: Comparison of fixed threshold
Time Original IAWR Threshold Optimization Result

45 37.63
50 39.20

Peak Hours
(AM 6:00 ∼ AM 10:00)

55.4

55 42.08
45 33.24
50 33.72

Off-peak Hours
(AM 10:00 ∼ PM 5:00)

49.68

55 35.06
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5.4.1 Experimental Results

In this experiment, we discuss the experimental results of morning peak hours,

off-peak hours, and all day separately.

Peak Hours

Due to the results of evening peak hours is similar to results of morning peak

hours, we only discuss the results of morning peak hours. The IAWR and opti-

mization times of morning peak hours are as shown in Figure 5.7. The IAWR of

GA, GA DTFI, and ATO are approximate, but the optimization times of ATO is

significantly less than the two methods especially in comparison with GA, ATO

reduces optimization times by 51%.

In addition, although the optimization times of GA FTDI is less than GA and

GA DTFI, but the IAWR is significantly higher than that optimized by the other

two methods. The reason is in the fixed threshold method, it is hard to detect the

increase in IAWR, thus causing the optimization interval continuously to increase.

Thus, when the IAWR is finally greater than the threshold and optimization per-

formed, a high IAWR continued already for some time.

Off-peak Hours

The IAWR and optimization times of off-peak hours are as shown in Figure

5.8. For off-peak hours, the IAWR of GA and ATO are approximate, but the

optimization times incurred by is 10% more than that by GA. That means the

adaptive adjustment of optimization has lower benefits during off-peak hours.
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Figure 5.7: IAWR and optimization times of morning peak hours

In addition, the optimization times of GA DTFI is significantly more than

other methods. The reason is the dynamic threshold adjustment sets the thresh-

old gradually closer to IAWR but the optimization interval is fixed and short.

Therefore, the threshold rapidly become closer to the IAWR, thus causing opti-

mization to be easily triggered in spite of the increment of IAWR due to slight

changes in traffic volumes.
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Figure 5.8: IAWR and optimization times of off-peak hours

All Day

The IAWR and optimization times of all day are as shown in Figure 5.8. For

the all day, the IAWR of GA, GA DTFI, and ATO are approximate and ATO has

the least optimization times compared with GA, ATO reduces optimization times

by 21%.

In summary, the adaptive adjustment of optimization improves the computa-

tional efficiency in signal timing optimization of all day.

5.4.2 Reduction in Optimization Times in Real-World Sit-

uations

Based on the above experiments, we have demonstrated that the adaptive ad-

justment of optimization can effectively reduce the number of optimization times

throughout the full day. However, the examples considered only few road inter-
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Figure 5.9: IAWR and optimization times of all day

sections.

In this section, we consider and discuss real-world situations. We take the

example of the Taipei City, where the total number of intersections is 2,428 [23].

The maximum number of optimization times is 2,428 that may be performed

during peak hours. Further, we consider the traffic optimization to be performed

in an embedded system environment, rather than on a PC. Thus, we measure the

execution time of a single time of optimization on the PC and also estimate the

execution time in the embedded system environment based on the Intel Galileo

board [24]. The execution times are shown in Table 5.10.

With the increase in phases, the number of generations and the population

size both need to be increased to obtain better results. Therefore, we used 75

generations and a population size of 75 for 3-phase road intersections and 100

generations and a population size of 100 for 4-phase road intersections. In the
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peak hours, the optimization interval is usually set to the minimum (i.e., 5 cycles).

The time of optimization intervals are as shown in Table 5.11.

Finally, we use the execution time to calculate the optimization time for pro-

grams running on the Intel Galileo platform during peak hours and compare the

execution time of the GA method (no adaptive adjustment of optimization) and

the ATO method. The comparison results are shown in Table 5.12, where the op-

timization time of the GA method is always larger than the time of optimization

interval, while the optimization time of the ATO method is always within the time

of optimization interval. It means in real-world situations, the GA method need

more a more compute-intensive environment to ensure the current optimization

can be completed before the next optimization. However, the ATO method need

lesser amount of computation devices to achieve the same goal.

Table 5.10: Execution time of PC and Galileo

Case
PC

CPU = 3.6 GHz
Galileo

CPU = 400 MHz
GA Parameters Phases Measured Estimated

2 30 ms 270 ms
3 35 ms 315 ms

Generation = 50
Population Size = 50

4 41 ms 369 ms
2 65 ms 585 ms
3 75 ms 702 ms

Generation = 75
Population Size = 75

4 92 ms 828 ms
2 117 ms 1,053 ms
3 140 ms 1,260 ms

Generation = 100
Population Size = 100

4 167 ms 1,503 ms
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Table 5.11: Time of optimization interval
Phases One cycle Minimum optimization interval (5 cycles)

2 60 ∼ 180 sec 300 ∼ 900 sec
3 90 ∼ 270 sec 450 ∼ 1,350 sec
4 120 ∼ 360 sec 600 ∼ 1,800 sec

Table 5.12: Optimization time of Galileo
Maximum number of optimization 2,428

Reduction in peak hours 51 %
Optimization time

Phases Origin ATO
2 656 sec 322 sec
3 1,705 sec 836 sec
4 3,650 sec 1,789 sec
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Chapter 6

Conclusions

In this Thesis, we proposed an architecture for Cyber-Physical Traffic Control

Systems (CPTCS) with Adaptive Timing Optimization (ATO), including GA-

based signal timing optimization and adaptive adjustment of optimization. We

adapt the GA-based signal timing optimization to reduce the number of waiting

vehicles at intersections. Further, we use adaptive adjustment of optimization to

reduce the number of times optimization is performed, while maintaining the same

optimization effect, thus improves greatly the computational efficiency of traffic

signal control.

Comparing optimization results shows that our proposed ATO can reduce

IAWR by 34% in the all day case and the maximum reduction in IAWR is 39%

during the evening peak hours. Compared with the Game theory-based method,

ATO incurs a reduction in IAWR which is almost double for both the peak hours

and the off-peak hours.

Comparing optimization times shows that compared with signal timing opti-
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mization only, signal timing optimization with adaptive adjustment of optimiza-

tion result in 51% reduction in optimization times during peak hours and a 10%

increment in optimization times during off-peak hours. Overall, the adaptive ad-

justment of optimization can reduce the optimization times by 21% for the full

day.
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